多复变近期进展

By pxxyyz

Github

Fock-Bargmann-Hartogs域

研究方向

针对Fock-Bargmann-Hartogs域及其广义域,研究方向主要集中以下三点:

  1. 借助度量推导边界Schwarz Lemma;
  2. 利用Bergman核的精确形式来推导逆紧映射的刚度性质;
  3. 判断Bergman算子和Toeplitz算子的有界性;

研究背景


  • 介绍域: Fock-Bargmann-Hartogs域、广义复椭球、广义Fock-Bargmann-Hartogs域
  • Schwarz引理: 域的性质、边界性质、函数性质
  • 刚度性质: 域的Bergman核精确形式、域的自同构群、边界点的属性
  • 算子有界性: Bergman算子的有界性和正则性、Toeplitz算子的有界性

Fock-Bargmann-Hartogs域(无界非双曲强拟凸+具有光滑实解析边界)

Dn,m(μ)={(z,w)Cn×Cm:w2<eμz2}D_{n, m}(\mu) = \left\{ (z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{m}: \|w\|^{2} < e^{-\mu\|z\|^{2}} \right\}

  • 有界域的几何和解析性质不能直接推广至无界域甚至非双曲强拟凸域
  • 与Fock-Bargmann域密切相关,利用加权Hilbert空间的高斯核计算其Bergman核

广义复椭球(非强拟凸域+边界非光滑)

Σ(n;p)={(ζ1,,ζr)Cn1××Cnr:k=1rζk2pk<1}\Sigma({n} ; {p})=\left\{\left(\zeta_{1}, \ldots, \zeta_{r}\right) \in \mathbb{C}^{n_{1}} \times \cdots \times \mathbb{C}^{n_{r}}: \sum_{k=1}^{r}\left\|{\zeta}_{k}\right\|^{2 p_{k}}<1\right\}

广义Fock-Bargmann-Hartogs域Dn0n,p(μ)D_{n_{0}}^{n, p}(\mu)定义如下

Dn0n,p(μ)={(z,w(1),,w())Cn0×Cn1××Cn:j=1w(j)2pj<eμz2}D_{n_{0}}^{n, p}(\mu)=\left\{\left(z, w_{(1)}, \ldots, w_{(\ell)}\right) \in \mathbb{C}^{n_{0}} \times \mathbb{C}^{n_{1}} \times \cdots \times \mathbb{C}^{n_{\ell}}: \right.\left.\sum_{j=1}^{\ell}\left\|w_{(j)}\right\|^{2 p_{j}} < e^{-\mu\|z\|^{2}}\right\}

  • 无界非双曲域

bDn0n,p(μ)=b0Dn0n,p(μ)b1Dn0n,p(μ)b2Dn0n,p(μ)b D_{n_{0}}^{n, p}(\mu)=b_{0} D_{n_{0}}^{n, p}(\mu) \cup b_{1} D_{n_{0}}^{n, p}(\mu) \cup b_{2} D_{n_{0}}^{n, p}(\mu)

  • 非强拟凸域+边界非光滑
    • b0Dn0n,p(μ)b_{0} D_{n_{0}}^{n, p}(\mu) 实解析+强拟凸
    • b1Dn0n,p(μ)b_{1} D_{n_{0}}^{n, p}(\mu) 弱拟凸但非强拟凸
    • b2Dn0n,p(μ)b_{2} D_{n_{0}}^{n, p}(\mu) 非光滑

研究热点-在各种域及各种函数的性质上推广传统的Schwarz lemma

  • 域的性质: 有(无)界域、凸性、度量、广义域
  • 边界性质: 等维度、光滑性、不动点
  • 函数性质: 全纯(调和)、(高阶)导、特征值

文献[1]研究了Fock-Bargmann-Hartogs域的Kobayashi 伪度量KD1,1\mathcal{K}_{D_{1,1}}的具体形式;据此给出非等维度的Fock-Bargmann-Hartogs域间全纯函数的边界Schwarz lemma.

Let F=(f,h):D1,1Dn,mF = ( f , h) : D_{1,1} \to D_{n,m} be a holomorphic mapping and holomorphic at pD1,1p \in \partial D_{1,1} with F(p)=qDn,mF(p) = q \in \partial D_{n,m}. Then we have the result as follows::

  • There exists λR\lambda \in \mathbb{R} such that JF(p)TqT=λpT\overline{J_{F}(p)}^{T} q^{T}=\lambda p^{T} with λ1h1(0)2/(1h1(0)2)>0\lambda \geq|1-\overline{h_{1}(0)}|^{2} /\left(1-\left|h_{1}(0)\right|^{2}\right)>0. Notice that pTp^T and qTq^T are the normal vectors to the boundary of D1,1D_{1,1} at pp and Dn,mD_{n,m} at qq, respectively.
  • JF(p)J_F(p) can be regarded as a linear operator from Tp1,0(D1,1)T_{p}^{1,0}\left(\partial D_{1,1}\right) to TF(p)1,0(Dn,m)T_{F(p)}^{1,0}\left(\partial D_{n,m}\right). Moreover, we have JF(p)opλ\left\|J_{F}(p)\right\|_{o p} \leq \sqrt{\lambda} *where op\left\|\cdot\right\|_{o p} means the usual operator norm.

总结:光滑性边界点的雅可比阵之特征值来建立边界点间的关系.

研究热点-在无界弱拟凸域逆紧全纯映射与双全纯映射的联系.

  • 域的Bergman核精确形式
  • 域的自同构群
  • 边界点的属性

文献[3]给出等维Fock-Bargmann-Hartogs域的刚度结论.

If Dn,m(μ)D_{n,m}(\mu) and Dn,m(μ)D_{n^{\prime}, m^{\prime}}\left(\mu^{\prime}\right) are two equidimensional Fock-Bargmann-Hartogs domains with m2m \geq 2 and ff is a proper holomorphic mapping of Dn,m(μ)D_{n,m}(\mu) into Dn,m(μ)D_{n^{\prime}, m^{\prime}}\left(\mu^{\prime}\right), then ff is a biholomorphism between Dn,m(μ)D_{n,m}(\mu) and Dn,m(μ)D_{n^{\prime}, m^{\prime}}\left(\mu^{\prime}\right).

文献[2]用Aut(Σ(n;p))Aut(\Sigma({n} ; {p}))Aut(Dn,m(μ))Aut(D_{n, m}(\mu))推导Aut(Dn0n,p(μ))Aut(D_{n_{0}}^{n, p}(\mu));用Dn,m(μ)D_{n, m}(\mu)Bergman的核精确形式[4],通过正交基表示形式给出Dn0n,p(μ)D_{n_{0}}^{n, p}(\mu)的Bergman核表达式;进一步给出Dn0n,p(μ)D_{n_{0}}^{n, p}(\mu)的边界性质

Suppose Dn0n,p(μ)D_{n_{0}}^{n, p}(\mu) and Dm0m,q(ν)D_{m_{0}}^{m, q}(\nu) are two equidimensional generalized Fock-Bargmann-Hartogs domains with

min{n1+ϵ,n2,,n,n1++n}2\min \left\{n_{1+\epsilon}, n_{2}, \ldots, n_{\ell}, n_{1}+\cdots+n_{\ell}\right\} \geq 2

min{m1+δ,m2,,m,m1++m}2\min \left\{m_{1+\delta}, m_{2}, \ldots, m_{\ell}, m_{1}+\cdots+m_{\ell}\right\} \geq 2

Then any proper holomorphic mapping between Dn0n,p(μ)D_{n_{0}}^{n, p}(\mu) and Dm0m,q(ν)D_{m_{0}}^{m, q}(\nu) must be a biholomorphism; any proper holomorphic self-mapping of Dn0n,p(μ)D_{n_{0}}^{n, p}(\mu) must be an automorphism.

总结:给出一种原始域到广义域的性质推广的模版.

  • Hartogs三角域

H={(z1,z2)C2:z1<z2<1}\mathbb{H}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} :|z_{1}|<| z_{2} |<1\right\}

  • 广义Hartogs三角域

H{kj,ϕj}n={zCn:max1jlϕj(z~j)<zk+1<<zn<1}\mathbb{H}_{\left\{k_{j}, \phi_{j}\right\}}^{n}=\left\{z \in \mathbb{C}^{n}:\max _{1 \leq j \leq l}| \phi_{j}\left(\tilde{z}_{j}\right)|<| z_{k+1}|<\cdots<| z_{n} |<1\right\}

文献[6]给出H{kj,ϕj}n\mathbb{H}_{\left\{k_{j}, \phi_{j}\right\}}^{n}上Bergman算子的有界性.

For 1p<1 \leq p < \infty and 1k<n1 \leq k < n, the Bergman projection PH{kj,ϕj}nP_{\mathbb{H}_{\left\{k_{j}, \phi_{j}\right\}}^{n}} for H{kj,ϕj}n\mathbb{H}_{\left\{k_{j}, \phi_{j}\right\}}^{n} is bounded on Lp(H{kj,ϕj}n)L^{p}\left(\mathbb{H}_{\left\{k_{j}, \phi_{j}\right\}}^{n}\right) if and only if pp is in the range (2nn+1,2nn1)\left(\frac{2 n}{n+1}, \frac{2 n}{n-1}\right).

  • Hartogs三角域

H={(z1,z2)C2:z1<z2<1}\mathbb{H}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} :|z_{1}|<| z_{2} |<1\right\}

  • 广义Hartogs三角域

H{kj,ϕj}n={zCn:max1jlϕj(z~j)<zk+1<<zn<1}\mathbb{H}_{\left\{k_{j}, \phi_{j}\right\}}^{n}=\left\{z \in \mathbb{C}^{n}:\max _{1 \leq j \leq l}| \phi_{j}\left(\tilde{z}_{j}\right)|<| z_{k+1}|<\cdots<| z_{n} |<1\right\}

  • 广义Hartogs三角域

Hkn+1:={(z,w)Cn×C:z<wk<1}\mathcal{H}_{k}^{n+1}:=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}:\|z\|<|w|^{k}<1\right\}

  • 广义Hartogs三角域

H{kj,ϕj,b}n={zCn:max1jlϕj(z¯j)<zk+1b<<znb<1}\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n} = \left\{z \in \mathbb{C}^{n}: \max _{1 \leq j \leq l}\left\|\phi_{j}\left(\bar{z}_{j}\right)\right\|< \left|z_{k+1}\right|^{b} < \cdots< \left|z_{n} \right|^{b} < 1\right\}

文献[5]给出H{kj,ϕj,b}n\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}上Toeplitz算子的有界性.

Let TKtT_{K^{-t}} be the Toeplitz operator with the symbol Kt(z,z),t0K^{-t}(z, z), t \geq 0. Let 1<pq<1 < p \leq q < \infty and Cb,k=k(b1)C_{b, k}=k(b-1).$
(1) If q[2n+2Cb,kn1+Cb,k,),q \in\left[\frac{2 n+2 C_{b, k}}{n-1+C_{b, k}}, \infty\right), then the Toeplitz operator TKtT_{K^{-t}} does not map Lp(H{kj,ϕj,b}n)L^{p}\left(\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}\right) into Lq(H{kj,ϕj,b}n)L^{q}\left(\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}\right) for any t0t \geq 0
(2) If q(2(n1)+2Cb,kn+1+Cb,k2/p,2n+2Cb,kn1+Cb,k),q \in\left(\frac{2(n-1)+2 C_{b, k}}{n+1+C_{b, k}-2 / p}, \frac{2 n+2 C_{b, k}}{n-1+C_{b, k}}\right), then the Toeplitz operator TKtT_{K^{-t}} continuously maps Lp(H{kj,ϕj,b}n)L^{p}\left(\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}\right) into Lq(H{kj,ϕj,b}n)L^{q}\left(\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}\right) if and only if t1p1qt \geq \frac{1}{p}-\frac{1}{q}
(3) If q[p,2(n1)+2Cb,kn+1+Cb,k2/p],q \in\left[p, \frac{2(n-1)+2 C_{b, k}}{n+1+C_{b, k}-2 / p}\right], then the Toeplitz operator TKtT_{K^{-t}} continuously mapsLp(H{kj,ϕj,b}n)L^{p}\left(\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}\right) into Lq(H{kj,ϕj,b}n)L^{q}\left(\mathcal{H}_{\left\{k_{j}, \phi_{j}, b\right\}}^{n}\right) if and only if t>12p+(1p)2pn+1+Cb,kn1+Cb,kt>\frac{1}{2 p}+\frac{(1-p)}{2 p} \frac{n+1+C_{b, k}}{n-1+C_{b, k}}

总结:原始域Bergman算子正则性\to广义域Toeplitz算子有界性.


Thanks


U work so hard, but 干不过 write PPTs

快使用 nodeppt 轻松搞定高大上PPT
nodeppt 助力你的人生逆袭之路!

Github

* * *